Skip to main content

SETS, RELATIONS & FUNCTIONS

SETS, RELATIONS & FUNCTIONS

Sets are a fundamental part of mathematics and it’s knowledge is very important in present. It defines the concepts of relation and functions. These functions are also very essential for present day maths.

SETS

Sets are denoted by capital letters. They are similar to matrices whose elements are denoted by small letters. But in sets an element comes only at once. Sets are matrices which give a sense of belonging. This sense of belongingness is represented by   .We can write anything in a set like rivers of India, Wonders of the World .etc. 
For an example let there be a set of positive single digit. Let the set be denoted as A
Therefore, 8 A
 Also we can write, 17 A
Set can be represented by two types 

ROSTER

In roster form we write elements in curly brackets and separate them with comma. 
If there be set of positive integers less than 10. Therefore the set will be {1,2,3,4,5,6,7,8,9} 

SET- BUILDER FORM

In set-builder form we take a variable x and then gives its condition. For eg: we can write the above example as
{x: x is positive integer less than 7}
There are some standard symbols for specific sets like
N : set of all natural numbers
Z : set of all integers numbers
R : set of all real numbers
Z+/Z- : set of all positive/negative integers
Q+/Q- : set of all positive/negative rational numbers
R+/R- : set of all positive/negative real numbers

TYPES OF SETS 

There are various kind of sets. 
EMPTY SET
Set having no element is called an empty set
 For eg: {x: x < 0, x is a whole number }
Whole number is 0 and more than 0. Thus it is a empty set
FINITE AND INFINTE SETS
Sets which have limited elements are called finite set 
For ex: {x: 0 < x < 15}
Sets which have infinite number of sets are called infinite set 
For ex: {x: x R}
EQUAL SETS
Sets which have same elements are called equal sets. The elements can be in any order
For ex: {2, 5, 6, 7} and {5, 7, 6, 2} are equal sets
             {x: 0<x<11} and {x: x is an natural number less 11}
NOTE : in this articles I can use the following sign
              ≤ - more than or equals to 
              ≥ - less than or equals to
SINGELTON SETS
Sets having only single element are called singleton sets. 
For ex: {x: 1<x<3, x Z} is an singleton set.
SUBSET
Subset means when every element of a set A is in another set B. In this case we write … 
A B
If a A and A B then a B
if A is not a subset of B then we write
A B
For ex: A = {1, 3, 5} , B = {2, 3, 1, 6, 5, 7} then A B
If A B and B A then the two sets are equal
Remember A is a subset of B is not vice versa, which means that if A is a subset of B then it is not necessary that B is a subset of A.
Also, 
  • Every set is a subset of itself
  • Empty set is a subset of every set
  • The maximum number of subsets of a set having n elements is 2n

INTERVAL AS SUBSETS OF SETS OF REAL NUMBERS   
Let a, b R. Let a set is in the form
{y: a<y<b}
Then this is known as an open set which means that ‘a’ and ‘b’ are not included in the set. Such sets can be written as (a, b) with curly brackets.
If ‘a’ and ‘b’ are included in the set then we write [a, b] with square brackets
There can be set known as the semi-open set. In this set it is open at one end and closed at the other. Like … [a, b)…closing at ‘a’ and opening at ‘b’ or …(a, b]… opening at ‘a’ and closing at ‘b’
This can be represented in a number line with the help of filled and unfilled dots. Filled dots for closed and unfilled for opened 

POWER SET OF A SET

Power set is a set containing all the subsets of a set A. It is denoted by P(A). In P(A) all elements are sets. If A has n elements then P(A) has 2n elements
If A = {a, b} then P(A) = {φ, {a}, {b}, {a, b}}

UNIVERSAL SET

Out of given number of set if there is a set such that every other set is a subset of it then it is called a universal set
If there is are sets A, B, C, D
Such that A D, B D, C D then D is the universal set. It is represented by ‘U’

OPERATION OF SETS

UNION OF SETS
Union sets means that a set which contains all the elements of A + all the elements of B. If A and B have some common elements then we do not repeat them.
It can be represented by
A B {x: x A or x B}
The colored region is the desired set. 
INTERSECTION OF SET
Intersection of set is a set which have only the common elements of the two sets
It can be represented by , A B

the yellow region is the intersection of A and B
COMPLEMENT OF A SET
Complement of a set is the difference of the set and its union set
It is denoted by A
     A + A = U



Comments

Post a Comment

Popular Posts

Levitation 2

LEVITATION II To be completely honest I was going to start this with a pun. I did think of one but it doesn’t float… I am sorry I just had to. Anyway, this is the second part to the article on super cool ways of making things levitate. Go check the first part out if you haven’t already. Actually, the first part may have become repulsive with all the magnets and stuff, but I promise this will be more attractive. Get it? No? I’ll stop now. I am just going to jump straight into it. 1.    Electrostatic Levitation I know you are probably sick and tired of magnets but they are the best way you know… This method is somewhat similar. You remember that cool science experiment you did with two straws attracting or repulsing each other based on their charge? So basically using the same principle we can make a charged object levitate. But before you try it, let me tell you it won’t be easy. Even impossible according to our Mr. Earnshaw. He even made a law (th...

High School Pedia

It is an initiative by some students to spread the light of knowledge to everyone and everywhere. It was started in the year 2015 and has grown rapidly in the past few months. By the means of this website, we try to provide information on every topic that we can reach up to. You can find different articles on this website. All these articles are written in simple language so that everyone can understand it and learn from it. We at High School Pedia believe in creative learning and this is the reason why we add our own edited graphical representations in every article. Once a very learned man said, “Knowledge increases by not keeping it to yourself but by sharing it with others”. And we follow the same motto “Share to Learn”. The team of High School Pedia tries its best to provide you with the best and original content. Unlike many other websites, High School Pedia is famous for its original and inspiring content.

Important Mathematical Constants!

Important Mathematical Constants Mathematical constants are those numbers that are special and interesting because they come up in the various fields of mathematics like geometry, calculus etc. These mathematical constants are usually named after the person who discovered it and they are represented by a symbol that is usually picked up from the Greek alphabet. Mathematical constants are by definition very important. In this article we will take a look at certain mathematical constants that are more commonplace than others. 1.       π (pi) or Archimedes constant (~3.14159):   π is defined as the ratio of the circumference of a circle to its diameter. This is probably the most popular mathematical constant. So π is the circumference of the circle whose diameter is 1 unit. You might have seen it popping up when calculating the area of a circle (πr 2 ) or the circumference of a circle (2πr). It has many uses throughout mathematics from calcula...

Permutation and Combination

Permutation and Combination Hey guys, I am back with one more interesting mathematics topic. And I am pretty sure that you guys would find it interesting too because many of you must have faced problems regarding these arrangements. Although if you were not able to solve them at that moment of time I am sure after completing this article you would solve the problem in minutes or even seconds. WHAT IS THE DIFFERENCE ?? Many people get confused between these two terms permutation and combination. They both have almost similar use but have a vast difference in their meaning. You may think that both of them mean arranging entities, then what is the difference ?? For making it easy we will take an example, lets say I have four friends : Arya, Bhavesh, Chirayu and Dhruv. So if I arrange them like Arya, Bhavesh, Chirayu and Dhruv or Dhruv, Chirayu, Bhavesh and Arya, it will make no difference in combinations but if you check them according to permutation they will be different. As ...

Paid Apps For Free ??

Everyone wants to play a game like GTA on iPad, it is easy on a computer to download such games but difficult on smart devices like iPad, tablet,  or smartphones. We can buy them but not everyone can buy games. But no worries guys there is a solution to this problem where one can have fun of playing games without spending their precious money .(underlined apps have downloading links  given at the end) iOS There many apps through which you can download these paid games for free. Also, there are many sites for the same. One of the most helpful apps is a Chinese app.It is called haimawan. If on a ios device, then you just have to click install which will redirect to settings  add a profile  and boom enjoy it as you wish . but it does not always work, it might work for few days and then the verification problem which may not cure. One more app is tutu which is a fantastic app and always work (99.9% sure .. nothing is perfect). X cross was the perfect app b...

Rutherford Alpha Ray Scattering Experiment

Rutherford Alpha Ray Scattering Experiment Hey, Guys, most of you might have heard about the alpha ray scattering experiment and if you want to know in detail about Rutherford's model and the experiment he conducted, this is the right place for you... But first: Things You Must Know Some basic information that will help you understand rutherford experiment properly: Proton is a sub-atomic particle which is positively charged and has a mass of 1u. Alpha particles are helium atom with a charge of +2 as they have lost 2 electrons. Alpha particles have an atomic mass  of 4u. Gold is highly malleable and can be beaten into very thin sheets. Experiment Rutherford conducted his experiment in the following way: Rutherford took a very thin gold foil and bombarded it with high energy alpha particles. He placed a layer of zinc sulphide on the walls where the experiment was taking place because when alpha particles ...

Finding Square Roots Easily (Vedic Math)

Finding Square Roots Easily (Vedic Math) Hello, Guys!!! I’m back with another post on Vedic Math that is going to keep you glued rooted to your spot 😆. This time I’m going to teach you how to calculate the square roots of perfect squares faster… With a little practice, this method can let you calculate the roots in a matter of 5 seconds, whereas if you had used the traditional method, you would still be stuck with your question 😏 Things you need to know:- Perfect square which has unit digit 1 will have square root with the last digit as 1 or 9 Perfect square which has unit digit 4 will have square root with the last digit as 2 or 8 Perfect square which has unit digit 5 will have square root with the last digit as 5 Perfect square which has unit digit 6 will have square root with the last digit as 4 or 6 Perfect square which has unit digit 9 will have square root with the last digit as 3 or 7 Perfect square which has unit digit 0 will have square r...