## PARETO PRINCIPLE

The world is not fair. It is extremely unequal. Some people get everything and others nothing. You know what the craziest part about this is?

### This inequality is mathematical.

As absurd as this may sound, there is a phenomenon, rather “principle” to describe this, The Pareto Principle.

If I change my opening statement to, 20% of the people get 80% of everything and the others only 20% of everything this statement becomes a perfect example of Pareto’s Principle.

It may be clear already but the Pareto principle basically states that, for many events, roughly 80% of the effects come from 20% of the causes, and hence is also called the 80/20 rule.

### Vilfredo Pareto

An economist (quite obviously the guy who demonstrated this principle) originally noted this effect in his garden. With peapods. Math doesn’t always have to be nerdy and theoretical. So moving on, he found that 80% of the peas were inside only 20% of the peas. Now when he probably told his fellow economists/ mathematicians I am sure he faced a lot of criticism and was openly ridiculed. Actually, that is probably an understatement. A guy who wants to prove a mathematical law by showing it practically? What an idiot! Till date, we still have to write down stupid proofs for quite obvious theorems because the examiners can’t see it in the diagram. I have even had to prove that every natural number is even or odd…
But nonetheless, that was the first actual example of the Pareto principle. Afterward when he realized that his “peapod example” wasn’t enough he moved on to more material things.

He showed that 20% of the people owned 80% of the land in Italy (yes the guy was Italian. A mathematician who isn’t Greek? What a minority!). People started to believe him.

The principle still stayed as an underappreciated one. But this all was back in 1896. But as time passed and more data became to be analyzed, the principle became more important and evident.

### Income disparities

The most important application of this law is in income disparities. Till date whenever income surveys are conducted, people get all fussed up and seemingly shocked by the difference. In accordance with the Pareto Principle, the richest 20% of the world have about 82.7% of the world’s income (source: 1992 United Nations Development Program report)
.
Quite obviously figures like this come as a surprise. But on closer inspection, it is just math. It’s the Pareto Principle. So the next time somebody is criticizing this difference just tell them it’s math and tell them to read this article on our website. We definitely don’t self-advertise.

The beauty of math is there are no exceptions. This also holds true for the Pareto principle. Every large set of data having a comparison between two things ‘x’ and ‘y’ will show that 20% of x is directly linked to 80% of y.
• 20% of software bugs are responsible for 80% of crashes, glitches, and malfunction.
• 20% of hazards cause 80% of injuries and accidents.
• 20% of the people win about 80% of the awards.
• 20% of patients use up 80% of medical resources.
• 20% of criminals commit 80% of crimes.

### Need more examples?

In fact, if you read my article on Zipf’s Law, you would know the distribution of words in the language

As the image shows 20% of words account for about 80% of the word usage. So if you see closely, quite logically Zipf’s law is in part responsible for Pareto’ Principle. Math is interlinked. That is what makes it so easy and hard at the same time.

Enjoy your high school with - High School Pedia : www.highschoolpedia.com

### Anode Ray Experiment

→Anode ray experiment was conducted by E Goldstein. →These rays are also known as canal rays. →This experiment helped in the discovery of the proton. Apparatus Used A discharge tube  was taken in which there were 2 electrodes i.e. Anode(+ve) and the cathode (-ve). The tube was filled with an inert gas. A perforated or porous cathode was used. A layer of zinc sulphide was placed at the back of the cathode. There was a vacuum pump in the tube. High voltage (5000v-10000v) was allowed to flow through the system. It was observed that when the gas was at 1atm(atmospheric pressure ) no change was seen in the tube.  When the   pressure   was decreased inside the tube, a glow could be seen at the back side of the cathode.

### Levitation 2

LEVITATION II To be completely honest I was going to start this with a pun. I did think of one but it doesn’t float… I am sorry I just had to. Anyway, this is the second part to the article on super cool ways of making things levitate. Go check the first part out if you haven’t already. Actually, the first part may have become repulsive with all the magnets and stuff, but I promise this will be more attractive. Get it? No? I’ll stop now. I am just going to jump straight into it. 1.    Electrostatic Levitation I know you are probably sick and tired of magnets but they are the best way you know… This method is somewhat similar. You remember that cool science experiment you did with two straws attracting or repulsing each other based on their charge? So basically using the same principle we can make a charged object levitate. But before you try it, let me tell you it won’t be easy. Even impossible according to our Mr. Earnshaw. He even made a law (the law is

### Animal and Plant Cells

Cells Cells are the basic functional, biological and structural unit of life. The word cell is a Latin word meaning ‘small room’. Cells are also known as building blocks of life.  The branch of science that deals with the form, structure, and composition of a cell is known as Cytology. All organisms around us are made up of cells. Bacteria, ameba, paramecium, algae, fungi, plants and animals are made up of cells.  Cells together form tissues. And tissue together makes an organ. History Of Cell The cell was discovered by Robert Hooke in 1665. He assembled a simple microscope and observed a very thin slice of cork under his primitive microscope. The cork was obtained from the outer covering of a tree called bark. Robert Hooke observed many little-partitioned boxes or compartments in the cork slice. These boxes appeared like a honey-comb. He termed these boxes as the cell. He also noticed that one box was separated from another by a wall. What Ho

### Isotopes, Isobars and Isotones

Isotopes These are elements which have the same atomic number but different atomic mass . They have the same atomic number because the number of protons that are inside their nuclei remains the same. But, they have different atomic mass because the number of neutrons that are also inside their nuclei is different. As the number of protons inside nuclei remains same, therefore the overall charge of the elements also remains same as in isotopes: no of protons = no of electrons . Hence, as isotopes overall charge remains neutral, therefore their chemical properties will also remain identical.   Therefore, Isotopes are chemically same but physically different.