Skip to main content

Privacy Policy

At www.highschoolpedia.com, the privacy of our visitors is of extreme importance to us. This privacy policy document outlines the types of personal information is received and collected by www.highschoolpedia.com and how it is used. 

Log Files
Like many other Web sites, www.highschoolpedia.com makes use of log files. The information inside the log files includes internet protocol ( IP ) addresses, type of browser, Internet Service Provider ( ISP ), date/time stamp, referring/exit pages, and number of clicks to analyze trends, administer the site, track user’s movement around the site, and gather demographic information. IP addresses, and other such information are not linked to any information that is personally identifiable. 

Cookies and Web Beacons 
www.highschoolpedia.com does use cookies to store information about visitors preferences, record user-specific information on which pages the user access or visit, customize Web page content based on visitors browser type or other information that the visitor sends via their browser. 

DoubleClick DART Cookie 
.:: Google, as a third party vendor, uses cookies to serve ads on www.highschoolpedia.com.
.:: Google's use of the DART cookie enables it to serve ads to users based on their visit to www.highschoolpedia.com and other sites on the Internet. 
.:: Users may opt out of the use of the DART cookie by visiting the Google ad and content network privacy policy at the following URL - http://www.google.com/privacy_ads.html 

Some of our advertising partners may use cookies and web beacons on our site. Our advertising partners include ....


These third-party ad servers or ad networks use technology to the advertisements and links that appear on www.highschoolpedia.com send directly to your browsers. They automatically receive your IP address when this occurs. Other technologies ( such as cookies, JavaScript, or Web Beacons ) may also be used by the third-party ad networks to measure the effectiveness of their advertisements and / or to personalize the advertising content that you see. 

www.highschoolpedia.com has no access to or control over these cookies that are used by third-party advertisers. 

You should consult the respective privacy policies of these third-party ad servers for more detailed information on their practices as well as for instructions about how to opt-out of certain practices. www.highschoolpedia.com's privacy policy does not apply to, and we cannot control the activities of, such other advertisers or web sites. 

If you wish to disable cookies, you may do so through your individual browser options. More detailed information about cookie management with specific web browsers can be found at the browsers' respective websites.

Comments

  1. Incredible post I should say and a debt of gratitude is in order for the data. Schooling is certainly a tacky subject. Be that as it may, is still among the main subjects within recent memory. I appreciate your post and anticipate more. You have made some valid statements there. I looked on the web to study the issue and discovered a great many people will oblige your perspectives on this site...
    paper airplane designs for distance and speed | how to make a boomerang airplane | how to make a paper airplane eagle | best paper airplane design for distance and accuracy | paper airplane that flies far and straight | dihedral vs anhedral | science behind paper airplanes | classic dart paper airplane | zazoom internet | nakamura paper airplane

    ReplyDelete

Post a Comment

Popular Posts

Levitation 2

LEVITATION II To be completely honest I was going to start this with a pun. I did think of one but it doesn’t float… I am sorry I just had to. Anyway, this is the second part to the article on super cool ways of making things levitate. Go check the first part out if you haven’t already. Actually, the first part may have become repulsive with all the magnets and stuff, but I promise this will be more attractive. Get it? No? I’ll stop now. I am just going to jump straight into it. 1.    Electrostatic Levitation I know you are probably sick and tired of magnets but they are the best way you know… This method is somewhat similar. You remember that cool science experiment you did with two straws attracting or repulsing each other based on their charge? So basically using the same principle we can make a charged object levitate. But before you try it, let me tell you it won’t be easy. Even impossible according to our Mr. Earnshaw. He even made a law (the law is

Cathode Ray Experiment

This experiment was conducted by J.J. Thomson (Sir Joseph John Thomson) in the year 1897. This experiment proved that atom is made up of fundamental particles which are much smaller than the smallest atom 'hydrogen' This experiment helped to discover electron. According to J.J. Thomson, the cathode rays consisted of very light, small and negatively charged particles. He named the particles "corpuscles" which were later known as electrons

Anode Ray Experiment

→Anode ray experiment was conducted by E Goldstein. →These rays are also known as canal rays. →This experiment helped in the discovery of the proton. Apparatus Used A discharge tube  was taken in which there were 2 electrodes i.e. Anode(+ve) and the cathode (-ve). The tube was filled with an inert gas. A perforated or porous cathode was used. A layer of zinc sulphide was placed at the back of the cathode. There was a vacuum pump in the tube. High voltage (5000v-10000v) was allowed to flow through the system. It was observed that when the gas was at 1atm(atmospheric pressure ) no change was seen in the tube.  When the   pressure   was decreased inside the tube, a glow could be seen at the back side of the cathode.

Rutherford Alpha Ray Scattering Experiment

Rutherford Alpha Ray Scattering Experiment Hey, Guys, most of you might have heard about the alpha ray scattering experiment and if you want to know in detail about Rutherford's model and the experiment he conducted, this is the right place for you... But first: Things You Must Know Some basic information that will help you understand rutherford experiment properly: Proton is a sub-atomic particle which is positively charged and has a mass of 1u. Alpha particles are helium atom with a charge of +2 as they have lost 2 electrons. Alpha particles have an atomic mass  of 4u. Gold is highly malleable and can be beaten into very thin sheets. Experiment Rutherford conducted his experiment in the following way: Rutherford took a very thin gold foil and bombarded it with high energy alpha particles. He placed a layer of zinc sulphide on the walls where the experiment was taking place because when alpha particles strike zinc sulphide layer, it results i

Animal and Plant Cells

 Cells Cells are the basic functional, biological and structural unit of life. The word cell is a Latin word meaning ‘small room’. Cells are also known as building blocks of life.  The branch of science that deals with the form, structure, and composition of a cell is known as Cytology. All organisms around us are made up of cells. Bacteria, ameba, paramecium, algae, fungi, plants and animals are made up of cells.  Cells together form tissues. And tissue together makes an organ. History Of Cell The cell was discovered by Robert Hooke in 1665. He assembled a simple microscope and observed a very thin slice of cork under his primitive microscope. The cork was obtained from the outer covering of a tree called bark. Robert Hooke observed many little-partitioned boxes or compartments in the cork slice. These boxes appeared like a honey-comb. He termed these boxes as the cell. He also noticed that one box was separated from another by a wall. What Ho

Isotopes, Isobars and Isotones

Isotopes These are elements which have the same atomic number but different atomic mass . They have the same atomic number because the number of protons that are inside their nuclei remains the same. But, they have different atomic mass because the number of neutrons that are also inside their nuclei is different. As the number of protons inside nuclei remains same, therefore the overall charge of the elements also remains same as in isotopes: no of protons = no of electrons . Hence, as isotopes overall charge remains neutral, therefore their chemical properties will also remain identical.   Therefore, Isotopes are chemically same but physically different.

Important Mathematical Constants!

Important Mathematical Constants Mathematical constants are those numbers that are special and interesting because they come up in the various fields of mathematics like geometry, calculus etc. These mathematical constants are usually named after the person who discovered it and they are represented by a symbol that is usually picked up from the Greek alphabet. Mathematical constants are by definition very important. In this article we will take a look at certain mathematical constants that are more commonplace than others. 1.       π (pi) or Archimedes constant (~3.14159):   π is defined as the ratio of the circumference of a circle to its diameter. This is probably the most popular mathematical constant. So π is the circumference of the circle whose diameter is 1 unit. You might have seen it popping up when calculating the area of a circle (πr 2 ) or the circumference of a circle (2πr). It has many uses throughout mathematics from calculating the area of certain shap