Skip to main content

SETS, RELATIONS & FUNCTIONS

SETS, RELATIONS & FUNCTIONS

Sets are a fundamental part of mathematics and it’s knowledge is very important in present. It defines the concepts of relation and functions. These functions are also very essential for present day maths.

SETS

Sets are denoted by capital letters. They are similar to matrices whose elements are denoted by small letters. But in sets an element comes only at once. Sets are matrices which give a sense of belonging. This sense of belongingness is represented by   .We can write anything in a set like rivers of India, Wonders of the World .etc. 
For an example let there be a set of positive single digit. Let the set be denoted as A
Therefore, 8 A
 Also we can write, 17 A
Set can be represented by two types 

ROSTER

In roster form we write elements in curly brackets and separate them with comma. 
If there be set of positive integers less than 10. Therefore the set will be {1,2,3,4,5,6,7,8,9} 

SET- BUILDER FORM

In set-builder form we take a variable x and then gives its condition. For eg: we can write the above example as
{x: x is positive integer less than 7}
There are some standard symbols for specific sets like
N : set of all natural numbers
Z : set of all integers numbers
R : set of all real numbers
Z+/Z- : set of all positive/negative integers
Q+/Q- : set of all positive/negative rational numbers
R+/R- : set of all positive/negative real numbers

TYPES OF SETS 

There are various kind of sets. 
EMPTY SET
Set having no element is called an empty set
 For eg: {x: x < 0, x is a whole number }
Whole number is 0 and more than 0. Thus it is a empty set
FINITE AND INFINTE SETS
Sets which have limited elements are called finite set 
For ex: {x: 0 < x < 15}
Sets which have infinite number of sets are called infinite set 
For ex: {x: x R}
EQUAL SETS
Sets which have same elements are called equal sets. The elements can be in any order
For ex: {2, 5, 6, 7} and {5, 7, 6, 2} are equal sets
             {x: 0<x<11} and {x: x is an natural number less 11}
NOTE : in this articles I can use the following sign
              ≤ - more than or equals to 
              ≥ - less than or equals to
SINGELTON SETS
Sets having only single element are called singleton sets. 
For ex: {x: 1<x<3, x Z} is an singleton set.
SUBSET
Subset means when every element of a set A is in another set B. In this case we write … 
A B
If a A and A B then a B
if A is not a subset of B then we write
A B
For ex: A = {1, 3, 5} , B = {2, 3, 1, 6, 5, 7} then A B
If A B and B A then the two sets are equal
Remember A is a subset of B is not vice versa, which means that if A is a subset of B then it is not necessary that B is a subset of A.
Also, 
  • Every set is a subset of itself
  • Empty set is a subset of every set
  • The maximum number of subsets of a set having n elements is 2n

INTERVAL AS SUBSETS OF SETS OF REAL NUMBERS   
Let a, b R. Let a set is in the form
{y: a<y<b}
Then this is known as an open set which means that ‘a’ and ‘b’ are not included in the set. Such sets can be written as (a, b) with curly brackets.
If ‘a’ and ‘b’ are included in the set then we write [a, b] with square brackets
There can be set known as the semi-open set. In this set it is open at one end and closed at the other. Like … [a, b)…closing at ‘a’ and opening at ‘b’ or …(a, b]… opening at ‘a’ and closing at ‘b’
This can be represented in a number line with the help of filled and unfilled dots. Filled dots for closed and unfilled for opened 

POWER SET OF A SET

Power set is a set containing all the subsets of a set A. It is denoted by P(A). In P(A) all elements are sets. If A has n elements then P(A) has 2n elements
If A = {a, b} then P(A) = {φ, {a}, {b}, {a, b}}

UNIVERSAL SET

Out of given number of set if there is a set such that every other set is a subset of it then it is called a universal set
If there is are sets A, B, C, D
Such that A D, B D, C D then D is the universal set. It is represented by ‘U’

OPERATION OF SETS

UNION OF SETS
Union sets means that a set which contains all the elements of A + all the elements of B. If A and B have some common elements then we do not repeat them.
It can be represented by
A B {x: x A or x B}
The colored region is the desired set. 
INTERSECTION OF SET
Intersection of set is a set which have only the common elements of the two sets
It can be represented by , A B

the yellow region is the intersection of A and B
COMPLEMENT OF A SET
Complement of a set is the difference of the set and its union set
It is denoted by A
     A + A = U



Comments

Post a Comment

Popular Posts

Permutation and Combination

Permutation and Combination Hey guys, I am back with one more interesting mathematics topic. And I am pretty sure that you guys would find it interesting too because many of you must have faced problems regarding these arrangements. Although if you were not able to solve them at that moment of time I am sure after completing this article you would solve the problem in minutes or even seconds. WHAT IS THE DIFFERENCE ?? Many people get confused between these two terms permutation and combination. They both have almost similar use but have a vast difference in their meaning. You may think that both of them mean arranging entities, then what is the difference ?? For making it easy we will take an example, lets say I have four friends : Arya, Bhavesh, Chirayu and Dhruv. So if I arrange them like Arya, Bhavesh, Chirayu and Dhruv or Dhruv, Chirayu, Bhavesh and Arya, it will make no difference in combinations but if you check them according to permutation they will be different. As ...

High School Pedia

It is an initiative by some students to spread the light of knowledge to everyone and everywhere. It was started in the year 2015 and has grown rapidly in the past few months. By the means of this website, we try to provide information on every topic that we can reach up to. You can find different articles on this website. All these articles are written in simple language so that everyone can understand it and learn from it. We at High School Pedia believe in creative learning and this is the reason why we add our own edited graphical representations in every article. Once a very learned man said, “Knowledge increases by not keeping it to yourself but by sharing it with others”. And we follow the same motto “Share to Learn”. The team of High School Pedia tries its best to provide you with the best and original content. Unlike many other websites, High School Pedia is famous for its original and inspiring content.

Catalysts

Catalysts When we hear the word catalyst, the first thing that comes to mind is the game “Mirror’s Edge Catalyst”. But actually, catalysts are chemical substances that speed up the process of a chemical reaction but do not used up in the process of speeding up. The process of using catalysts to speed up chemical processes is called catalysis. Some examples are: Ø Hydrogen peroxide decomposes to form water and oxygen. 2H2O2 à 2H2O + O2 But in the presence of manganese dioxide (MnO2) the process is sped up and happens a lot faster. Ø Cars use a catalytic converter to convert carbon monoxide to carbon dioxide. These contain Platinum to speed up the process and keep the car’s system getting backed up. Ø Ammonia synthesis also uses Iron as a catalyst Catalysts work by reacting with a reactant. This is called a catalytic action. The product of the catalytic action is a chemical intermediate, which can react with the other reactant at a faster pace and give...

Levitation 2

LEVITATION II To be completely honest I was going to start this with a pun. I did think of one but it doesn’t float… I am sorry I just had to. Anyway, this is the second part to the article on super cool ways of making things levitate. Go check the first part out if you haven’t already. Actually, the first part may have become repulsive with all the magnets and stuff, but I promise this will be more attractive. Get it? No? I’ll stop now. I am just going to jump straight into it. 1.    Electrostatic Levitation I know you are probably sick and tired of magnets but they are the best way you know… This method is somewhat similar. You remember that cool science experiment you did with two straws attracting or repulsing each other based on their charge? So basically using the same principle we can make a charged object levitate. But before you try it, let me tell you it won’t be easy. Even impossible according to our Mr. Earnshaw. He even made a law (th...

Animal and Plant Cells

 Cells Cells are the basic functional, biological and structural unit of life. The word cell is a Latin word meaning ‘small room’. Cells are also known as building blocks of life.  The branch of science that deals with the form, structure, and composition of a cell is known as Cytology. All organisms around us are made up of cells. Bacteria, ameba, paramecium, algae, fungi, plants and animals are made up of cells.  Cells together form tissues. And tissue together makes an organ. History Of Cell The cell was discovered by Robert Hooke in 1665. He assembled a simple microscope and observed a very thin slice of cork under his primitive microscope. The cork was obtained from the outer covering of a tree called bark. Robert Hooke observed many little-partitioned boxes or compartments in the cork slice. These boxes appeared like a honey-comb. He termed these boxes as the cell. He also noticed that one box was separated from another by a wa...

Animals Known for Their Colours...

We all love colours, don't we? Listed down below are the Animals known for their colours and beauty:- 1) Mandarin Fish        The mandarin fish is a saltwater fish found in the Pacific Ocean. It sports a bright blue background, with swirly orange stripes and a blue-greenish face. Its attractive colours are due cellular pigmentation. They are usually reef dwellers. 2) Pheasant Pheasants are mainly found in Central Asia and Western Europe. The male bird has colourful feathers and an attractive long tail. Their colour varies between golden, brown, green, white and purple. While the head of male pheasants are red in colour, female pheasants are paler in this aspect.

The Inverse & Reciprocal TRIGONOMETRIC Functions

So, this is my second post on trigonometry. In this post we're gonna cover the reciprocal and the inverse Trigonometric functions. If you haven't seen my first post you should definitely view it as it covers the basics of Trigonometry The Reciprocal Trigonometric Functions The reciprocal Trigonometric function of Sine is Cosecant, of Cosine is Secant & for Tangent it is Cotangent. Cosecant (Csc θ = 1/Sin θ) or (Hypotenuse/Opposite) Secant (Sec θ = 1/Cos θ) or (Hypotenuse/Adjacent) Cotangent (Cot θ = 1/Tan θ) or (Adjacent/Opposite) We can also represent Tan θ in another way. As Tan θ = opposite/adjacent  & Sin θ = opposite/hypotenuse  & Cos θ = adjacent/hypotenuse ∴ Tan θ = Sin θ/Cos θ (The hypotenuses cancel out) As Cot θ = 1/Tan θ  So, we can also represent Cot θ as Cos θ/Sin θ.