Skip to main content

Leviation

LEVITATION


You know the classic magician’s trick in which he makes something or somebody levitate? Yeah well, it isn’t magic (obviously!). In fact, there are over 8 different ways in which he can make something levitate.
As a side note though, all of the following methods are fairly complicated. In all honesty what he actually probably does is hang the “thing” by a string. You got conned…


What is Levitation?
Levitation is flying’s younger brother who was ignored when his elder brother became possible. It’s a sad story…
Though in all seriousness levitation and flying are different. So please don’t be a jerk and post a comment saying, “Hey you relic! Levitation is already happening. Have you never sat in a plane before?!”
Levitation is (according to Google) and I quote “the action of rising or causing something to rise and hover in the air, typically by means of supposed magical powers.” Way to go Google! I thought we already cleared up that fact that magic isn’t real. So basically levitation is an object which is not in contact with anything, suspended above the ground.
OK fine I will give you what you came for “How to make things levitate?”

P.S. If you came here thinking that you could use one of these methods for your science fair, I suggest you turn back now. These are methods that geeky scientists use in their sci-fi labs so you will be disappointed

1) MAGNETS!!


Yay! Magnets are finally good for something! This method is probably the most commonly used to make things levitate. Remember crazy Japanese Maglev (Magnetic-Levitation) Trains? They work off the same principle.









Magnets can repel and attract each other right? So a very simple way to imagine magnetic levitation is if two dipolar (Two poles) magnets are placed repelling one another and one of them “levitating” above the other as a result. Don’t get it? Just look at the image.
The biggest problem with this is that the top magnet is not stable. It will topple over. Open challenge: Go ahead try and balance one magnet over another.

So as you may realize it isn’t very easy to do so. In fact, it is impossible, or so the guy who proposed this theory, Samuel Earnshaw thought. He even made a theorem, Earnshaw’s theorem on it. But along came a German fellow named Werner Braunbeck and proved him wrong. (Earnshaw’s theorem still holds true, but only for paramagnetic materials. More details later)
Braunbeck showed that if a diamagnetic material is placed atop a certain magnetic field it can levitate. Link for video showing this:
https://youtu.be/IFv4VOrWecI

Before going on let me explain paramagnetic and diamagnetic materials.
Diamagnetic materials have a weak, negative susceptibility to magnetic fields. Diamagnetic materials are slightly repelled by a magnetic field and the material does not retain the magnetic properties when the external field is removed. So basically most things like wood, gold, copper, silver, plastic etc. to which magnets don’t seem to stick are diamagnetic.
Paramagnetic materials have a small, positive susceptibility to magnetic fields. These materials are slightly attracted by a magnetic field and the material does not retain the magnetic properties when the external field is removed. These are more of the weird stuff like magnesium, molybdenum, lithium, and tantalum.

That probably did not make a lot of sense but it is the best I can do without writing a whole other article.

Moving on, that was the very basic homemade levitation. Humans can’t settle for that! So we took it a step further and used a bitter electromagnet to make a big natural body rich in water (water is diamagnetic so it worked for this experiment) levitate. What was that body you ask? A frog! Link:

That is essentially how Magnetic Levitation is used. There have been a few tweaks and changes which have been made to these techniques but the core principle is the same. I can’t be bothered with explaining it exactly but if you really want to know more just look up “Electromagnetic and Electrodynamic suspension” The link for the Wikipedia pages:
  

As far as applications go, levitation is cool need I say more? Just kidding! The super-fast Maglev trains which go up to 604kmph work on this principle. They are basically suspended using electromagnets. This eliminates most of the friction with the ground and helps them move faster. Other things like magnetic bearing also work on this principle.
There is another really cool video not directly linked to magnetic levitation but somewhat similar. Anyhow it is amazing. I would highly suggest checking this one out!

Did I say one? I am sorry, there actually two!
That entire thing was Magnetic Levitation.
But since this article has already become fairly long and I have a lot more of stuff about levitation. So for other cooler methods check out part II!


Levitation 2- https://www.highschoolpedia.com/2018/08/levitation-2.html

Levitation 3-

https://www.highschoolpedia.com/2018/08/levitation-3.html




Enjoy your high school with - High School Pedia : www.highschoolpedia.com

Comments

  1. Enjoyed reading the above article, in fact everything is explained here, the article is very interesting and effective. Thanks, and good luck for the upcoming articles. permanent magnet manufacturers

    ReplyDelete

Post a Comment

Popular Posts

High School Pedia

It is an initiative by some students to spread the light of knowledge to everyone and everywhere. It was started in the year 2015 and has grown rapidly in the past few months. By the means of this website, we try to provide information on every topic that we can reach up to. You can find different articles on this website. All these articles are written in simple language so that everyone can understand it and learn from it. We at High School Pedia believe in creative learning and this is the reason why we add our own edited graphical representations in every article. Once a very learned man said, “Knowledge increases by not keeping it to yourself but by sharing it with others”. And we follow the same motto “Share to Learn”. The team of High School Pedia tries its best to provide you with the best and original content. Unlike many other websites, High School Pedia is famous for its original and inspiring content.

Important Mathematical Constants!

Important Mathematical Constants Mathematical constants are those numbers that are special and interesting because they come up in the various fields of mathematics like geometry, calculus etc. These mathematical constants are usually named after the person who discovered it and they are represented by a symbol that is usually picked up from the Greek alphabet. Mathematical constants are by definition very important. In this article we will take a look at certain mathematical constants that are more commonplace than others. 1.       π (pi) or Archimedes constant (~3.14159):   π is defined as the ratio of the circumference of a circle to its diameter. This is probably the most popular mathematical constant. So π is the circumference of the circle whose diameter is 1 unit. You might have seen it popping up when calculating the area of a circle (πr 2 ) or the circumference of a circle (2πr). It has many uses throughout mathematics from calcula...

Animal and Plant Cells

 Cells Cells are the basic functional, biological and structural unit of life. The word cell is a Latin word meaning ‘small room’. Cells are also known as building blocks of life.  The branch of science that deals with the form, structure, and composition of a cell is known as Cytology. All organisms around us are made up of cells. Bacteria, ameba, paramecium, algae, fungi, plants and animals are made up of cells.  Cells together form tissues. And tissue together makes an organ. History Of Cell The cell was discovered by Robert Hooke in 1665. He assembled a simple microscope and observed a very thin slice of cork under his primitive microscope. The cork was obtained from the outer covering of a tree called bark. Robert Hooke observed many little-partitioned boxes or compartments in the cork slice. These boxes appeared like a honey-comb. He termed these boxes as the cell. He also noticed that one box was separated from another by a wa...

Pareto’s Principle

PARETO PRINCIPLE The world is not fair. It is extremely unequal. Some people get everything and others nothing. You know what the craziest part about this is? This inequality is mathematical. As absurd as this may sound, there is a phenomenon, rather “principle” to describe this, The Pareto Principle. If I change my opening statement to, 20% of the people get 80% of everything and the others only 20% of everything this statement becomes a perfect example of Pareto’s Principle. It may be clear already but the Pareto principle basically states that, for many events, roughly 80% of the effects come from 20% of the causes, and hence is also called the 80/20 rule. I realize that so far this may be ambiguous. So let’s explain this the classical way, with examples! Vilfredo Pareto An economist (quite obviously the guy who demonstrated this principle) originally noted this effect in his garden. With peapods . Math doesn’t always have to be nerdy and theoretical. ...

Zipf's Law

Zipf's Law What if I told you that just by using a simple formula, I can calculate the number of times any word comes in this article, or in a book, or even across the entire internet …? Zipf’s Law allows you to do exactly that with math that even a second grader can understand. The law states that “Given some  corpus  of  natural language  utterances, the frequency of any word is  inversely proportional  to its rank in the  frequency table .” Now what this essentially means is any word which is the n th most common word will occur x times where Formula X= Number of times the most common word is used                                              N This extremely overpowered. This is mainly because in any langu...

Rutherford Alpha Ray Scattering Experiment

Rutherford Alpha Ray Scattering Experiment Hey, Guys, most of you might have heard about the alpha ray scattering experiment and if you want to know in detail about Rutherford's model and the experiment he conducted, this is the right place for you... But first: Things You Must Know Some basic information that will help you understand rutherford experiment properly: Proton is a sub-atomic particle which is positively charged and has a mass of 1u. Alpha particles are helium atom with a charge of +2 as they have lost 2 electrons. Alpha particles have an atomic mass  of 4u. Gold is highly malleable and can be beaten into very thin sheets. Experiment Rutherford conducted his experiment in the following way: Rutherford took a very thin gold foil and bombarded it with high energy alpha particles. He placed a layer of zinc sulphide on the walls where the experiment was taking place because when alpha particles ...