Skip to main content

Blood Groups Part-2

Hey guys! Sorry for the delay, but here I present you the second part of my article Blood Groups. In the last article we discussed about blood groups and also about the ABO system of blood groups. If you missed it then do check it out.
Blood Groups

So in this part we will discuss the RH factor and the ways for the transfusion of blood.So first let us see what is RH Factor.

RH Factor( Rhesus Factor)

Many people also have Rh Factor on the red blood cell's surface. This is also an antigen and those who have it are called Rh positive. Those who don't have it are called Rh negative. A person with Rh negative blood does not have Rh antibodies naturally in the blood plasma (as one can have A or B antibodies for instance).
But a person with Rh negative blood can develop Rh antibodies in the blood plasma if she or he receives blood from a person with Rh positive blood, whose Rh antigens can trigger the production of Rh antibodies. A person with Rh positive blood can receive blood from a person with Rh negative blood without any problem.

According to both blood systems there are a total of 8 blood groups. Do you know which blood group you belong to ??
Now let us see what happens when you donate or receive blood.


What happens when blood clumps or agglutinates ???

For a blood transfusion to be successful, both ABO and Rh blood groups must be compatible between the donor blood and recipient blood. If they are not, the red blood cells from the donated blood will clump or agglutinate. The agglutinated red cells can clog blood vessels and stop the circulation of the blood to the various parts of the body. The agglutinated red blood cells also crack and its contents leak out in the body. The blood cells contain hemoglobin which becomes toxic when outside the cell. This can have fatal consequences for the recipient. 

The A antigen and the A antibodies can bind to each other in the same way as the B antigens can bind to B antibodies. This is what would happen if, for instance, a B blood person receives blood from an A blood person.  

Blood transfusions - who can receive blood from whom ??

Of course you can give A blood to persons with blood group A, B blood to a person with blood group B and so on. But in some cases you can receive blood with another type of blood group, or donate blood to a person with another kind of blood group.

The transfusion will work if a person who is going to receive blood has a blood group that does not have any antibodies against the donor blood's antigens. But if a person who is going to receive blood has antibodies matching the donor blood's antigens, the red blood cells in the donated blood will clump.

People with blood group O Rh negative are called "universal donors" and people with blood group AB Rh positive are called "universal receivers."
Rh positive blood can never be given to someone with Rh negative blood, but the other way around works. For example, O Rh positive blood cannot be given to someone with the blood type AB Rh negative, but O Rh negative blood can be given to someone with AB Rh positive.


Enjoy your high school with - High School Pedia : www.highschoolpedia.com



               

Comments

Popular Posts

Cathode Ray Experiment

This experiment was conducted by J.J. Thomson (Sir Joseph John Thomson) in the year 1897. This experiment proved that atom is made up of fundamental particles which are much smaller than the smallest atom 'hydrogen' This experiment helped to discover electron. According to J.J. Thomson, the cathode rays consisted of very light, small and negatively charged particles. He named the particles "corpuscles" which were later known as electrons

Anode Ray Experiment

→Anode ray experiment was conducted by E Goldstein. →These rays are also known as canal rays. →This experiment helped in the discovery of the proton. Apparatus Used A discharge tube  was taken in which there were 2 electrodes i.e. Anode(+ve) and the cathode (-ve). The tube was filled with an inert gas. A perforated or porous cathode was used. A layer of zinc sulphide was placed at the back of the cathode. There was a vacuum pump in the tube. High voltage (5000v-10000v) was allowed to flow through the system. It was observed that when the gas was at 1atm(atmospheric pressure ) no change was seen in the tube.  When the   pressure   was decreased inside the tube, a glow could be seen at the back side of the cathode.

Rutherford Alpha Ray Scattering Experiment

Rutherford Alpha Ray Scattering Experiment Hey, Guys, most of you might have heard about the alpha ray scattering experiment and if you want to know in detail about Rutherford's model and the experiment he conducted, this is the right place for you... But first: Things You Must Know Some basic information that will help you understand rutherford experiment properly: Proton is a sub-atomic particle which is positively charged and has a mass of 1u. Alpha particles are helium atom with a charge of +2 as they have lost 2 electrons. Alpha particles have an atomic mass  of 4u. Gold is highly malleable and can be beaten into very thin sheets. Experiment Rutherford conducted his experiment in the following way: Rutherford took a very thin gold foil and bombarded it with high energy alpha particles. He placed a layer of zinc sulphide on the walls where the experiment was taking place because when alpha particles strike zinc sulphide layer, it results i

Important Mathematical Constants!

Important Mathematical Constants Mathematical constants are those numbers that are special and interesting because they come up in the various fields of mathematics like geometry, calculus etc. These mathematical constants are usually named after the person who discovered it and they are represented by a symbol that is usually picked up from the Greek alphabet. Mathematical constants are by definition very important. In this article we will take a look at certain mathematical constants that are more commonplace than others. 1.       π (pi) or Archimedes constant (~3.14159):   π is defined as the ratio of the circumference of a circle to its diameter. This is probably the most popular mathematical constant. So π is the circumference of the circle whose diameter is 1 unit. You might have seen it popping up when calculating the area of a circle (πr 2 ) or the circumference of a circle (2πr). It has many uses throughout mathematics from calculating the area of certain shap

Paid Apps For Free ??

Everyone wants to play a game like GTA on iPad, it is easy on a computer to download such games but difficult on smart devices like iPad, tablet,  or smartphones. We can buy them but not everyone can buy games. But no worries guys there is a solution to this problem where one can have fun of playing games without spending their precious money .(underlined apps have downloading links  given at the end) iOS There many apps through which you can download these paid games for free. Also, there are many sites for the same. One of the most helpful apps is a Chinese app.It is called haimawan. If on a ios device, then you just have to click install which will redirect to settings  add a profile  and boom enjoy it as you wish . but it does not always work, it might work for few days and then the verification problem which may not cure. One more app is tutu which is a fantastic app and always work (99.9% sure .. nothing is perfect). X cross was the perfect app but is closed now an

2-D & 3-D GEOMETRY

2-D & 3-D GEOMETRY We all have some amount of geometry. We know that any line can be represented on the Cartesian plane. Any figure can be drawn on it. But can we represent a 3-d object on it. Yes we can. A Cartesian plane has 2 axis. While representing in 3-D we need to add a third axis. This axis does not come in between the axis or in the same plane. It appears to be coming out of the paper as we cannot represent a 3-d object on a 2-d surface. This new z-axis represents a line coming out of the screen. Before understanding 3-d geometry you need to imagine this axis coming out of the screen.  REMEMBER : all the three axis are perpendicular .i.e there an angle 0f 90 between them and they meet at the origin If you are unable to imagine you can take a thick book as an example. Any corner becomes it origin and the three edges as the three axis REPRESENTING 3-D GEOMETRY Like in 2-d geometry we represent the value of the different axis as (x,y) we use the same m

Animal and Plant Cells

 Cells Cells are the basic functional, biological and structural unit of life. The word cell is a Latin word meaning ‘small room’. Cells are also known as building blocks of life.  The branch of science that deals with the form, structure, and composition of a cell is known as Cytology. All organisms around us are made up of cells. Bacteria, ameba, paramecium, algae, fungi, plants and animals are made up of cells.  Cells together form tissues. And tissue together makes an organ. History Of Cell The cell was discovered by Robert Hooke in 1665. He assembled a simple microscope and observed a very thin slice of cork under his primitive microscope. The cork was obtained from the outer covering of a tree called bark. Robert Hooke observed many little-partitioned boxes or compartments in the cork slice. These boxes appeared like a honey-comb. He termed these boxes as the cell. He also noticed that one box was separated from another by a wall. What Ho