Skip to main content

Stains And Dyes

STAINS AND DYES


Stains and dyes are used to great lengths in microbiology to highlight certain parts or organelles of cells when put under the microscope. They can also be used to classify the various parts of the cells and different cell groups in a tissue. Stains can be used on their own as well as mixed with other stains and dyes. In fact, the process of using multiple stains to highlight important parts of an already stained cell is called counterstaining. You may have used safranine while preparing a temporary mount of leaf peel to observe stomata. That is an example of a stain.

When it comes to the process of applying stains, there are broadly two different classifications: IN VIVO staining and IN VITRO staining. As the name suggests, IN VIVO staining is practised on live tissue. It helps us observe the chemical reactions taking place within a living cell. Stains are used here to highlight the chemicals and chemical reactions taking place.

IN VITRO staining is practised on cells and tissues removed from their biological context. Staining here is usually not single i.e usually multiple stains are applied so that scientists can observe the various parts of the fixed sample. Many cells in a tissue may continue to perform some life processes until they are “fixed”. Different stains can be applied to the living and non-living parts of the cell. The stains that apply to the non-living parts of a cell are known as “vital stains”. These include stains like propidium iodide and erythrosine. These, quite ironically, get rejected by the living cells and apply to the dead cells.

Supravital stains, on the other hand, apply to the living cells in a tissue. They get accepted by the living cells but are toxic for the organism being studied and the living soon become the dead cells. These include stains like Nile blue, Methyl violet and Hoechst stain. As one can notice, stains are often named after the colour they represent.

Here let us take the example of two common stains: Iodine and Safranine.

Iodine

Iodine is not only the 53rd element of the modern periodic table, it is also a stain! Lugol’s iodine (IKI) is used as a stain in the test for starch. It is brown in colour in its aqueous solution, but turns black in the presence of starch. It can also be used as a cell stain for the nuclei of the cell, making it more visible.

Safranine

Safranine (C20H19ClN4) is a compound used for the staining of cell nuclei red while counterstaining. It is often confused with ‘saffron’, an expensive dye which also happens to appear in the Indian flag (Jai Hind!). It is also misspelled as ‘safranin’ but it requires the –ine ending as it is an amine.



Stains and dyes are also used in woodwork, where they are used to add colour to wood. There we can notice a difference between stains and dyes. Stain contain pigments for adding colour along with binders to help bind to the wood. Binders are glue-like substances which help the pigment get stuck to the wood.

Dyes, however do not contain pigments or binders but are clear and practically transparent so that the wood underneath can be seen. Dyes can be applied when they are mixed with water and alcohol which are not binders. They also sink into the wood so that the dyed wood feels the same as the wood you obtain from trees.

This article is written by Aman Thukral of Amity International School!!!

Enjoy your high school with - High School Pedia : www.highschoolpedia.com

Comments

Popular Posts

Cathode Ray Experiment

This experiment was conducted by J.J. Thomson (Sir Joseph John Thomson) in the year 1897. This experiment proved that atom is made up of fundamental particles which are much smaller than the smallest atom 'hydrogen' This experiment helped to discover electron. According to J.J. Thomson, the cathode rays consisted of very light, small and negatively charged particles. He named the particles "corpuscles" which were later known as electrons

Anode Ray Experiment

→Anode ray experiment was conducted by E Goldstein. →These rays are also known as canal rays. →This experiment helped in the discovery of the proton. Apparatus Used A discharge tube  was taken in which there were 2 electrodes i.e. Anode(+ve) and the cathode (-ve). The tube was filled with an inert gas. A perforated or porous cathode was used. A layer of zinc sulphide was placed at the back of the cathode. There was a vacuum pump in the tube. High voltage (5000v-10000v) was allowed to flow through the system. It was observed that when the gas was at 1atm(atmospheric pressure ) no change was seen in the tube.  When the   pressure   was decreased inside the tube, a glow could be seen at the back side of the cathode.

Rutherford Alpha Ray Scattering Experiment

Rutherford Alpha Ray Scattering Experiment Hey, Guys, most of you might have heard about the alpha ray scattering experiment and if you want to know in detail about Rutherford's model and the experiment he conducted, this is the right place for you... But first: Things You Must Know Some basic information that will help you understand rutherford experiment properly: Proton is a sub-atomic particle which is positively charged and has a mass of 1u. Alpha particles are helium atom with a charge of +2 as they have lost 2 electrons. Alpha particles have an atomic mass  of 4u. Gold is highly malleable and can be beaten into very thin sheets. Experiment Rutherford conducted his experiment in the following way: Rutherford took a very thin gold foil and bombarded it with high energy alpha particles. He placed a layer of zinc sulphide on the walls where the experiment was taking place because when alpha particles strike zinc sulphide layer, it results i

Important Mathematical Constants!

Important Mathematical Constants Mathematical constants are those numbers that are special and interesting because they come up in the various fields of mathematics like geometry, calculus etc. These mathematical constants are usually named after the person who discovered it and they are represented by a symbol that is usually picked up from the Greek alphabet. Mathematical constants are by definition very important. In this article we will take a look at certain mathematical constants that are more commonplace than others. 1.       π (pi) or Archimedes constant (~3.14159):   π is defined as the ratio of the circumference of a circle to its diameter. This is probably the most popular mathematical constant. So π is the circumference of the circle whose diameter is 1 unit. You might have seen it popping up when calculating the area of a circle (πr 2 ) or the circumference of a circle (2πr). It has many uses throughout mathematics from calculating the area of certain shap

Paid Apps For Free ??

Everyone wants to play a game like GTA on iPad, it is easy on a computer to download such games but difficult on smart devices like iPad, tablet,  or smartphones. We can buy them but not everyone can buy games. But no worries guys there is a solution to this problem where one can have fun of playing games without spending their precious money .(underlined apps have downloading links  given at the end) iOS There many apps through which you can download these paid games for free. Also, there are many sites for the same. One of the most helpful apps is a Chinese app.It is called haimawan. If on a ios device, then you just have to click install which will redirect to settings  add a profile  and boom enjoy it as you wish . but it does not always work, it might work for few days and then the verification problem which may not cure. One more app is tutu which is a fantastic app and always work (99.9% sure .. nothing is perfect). X cross was the perfect app but is closed now an

2-D & 3-D GEOMETRY

2-D & 3-D GEOMETRY We all have some amount of geometry. We know that any line can be represented on the Cartesian plane. Any figure can be drawn on it. But can we represent a 3-d object on it. Yes we can. A Cartesian plane has 2 axis. While representing in 3-D we need to add a third axis. This axis does not come in between the axis or in the same plane. It appears to be coming out of the paper as we cannot represent a 3-d object on a 2-d surface. This new z-axis represents a line coming out of the screen. Before understanding 3-d geometry you need to imagine this axis coming out of the screen.  REMEMBER : all the three axis are perpendicular .i.e there an angle 0f 90 between them and they meet at the origin If you are unable to imagine you can take a thick book as an example. Any corner becomes it origin and the three edges as the three axis REPRESENTING 3-D GEOMETRY Like in 2-d geometry we represent the value of the different axis as (x,y) we use the same m

Animal and Plant Cells

 Cells Cells are the basic functional, biological and structural unit of life. The word cell is a Latin word meaning ‘small room’. Cells are also known as building blocks of life.  The branch of science that deals with the form, structure, and composition of a cell is known as Cytology. All organisms around us are made up of cells. Bacteria, ameba, paramecium, algae, fungi, plants and animals are made up of cells.  Cells together form tissues. And tissue together makes an organ. History Of Cell The cell was discovered by Robert Hooke in 1665. He assembled a simple microscope and observed a very thin slice of cork under his primitive microscope. The cork was obtained from the outer covering of a tree called bark. Robert Hooke observed many little-partitioned boxes or compartments in the cork slice. These boxes appeared like a honey-comb. He termed these boxes as the cell. He also noticed that one box was separated from another by a wall. What Ho