Skip to main content

The Leaders of Our Future: The Woman

The Leaders of Our Future: The Woman


 “Girl child is a blessing. She can be the biggest loss,
 the biggest gain & above all the biggest reason of Happiness.”
“Save Girl’s and secure the Future”

‘Women’, a common word people laugh upon, a common person often stamped upon, but she, an ordinary person with the greatest of humanity & strength to rule the Nation. Yes, she’s a girl, an ordinary one who can do wonders to nation. Scruitening ourselves, is our treatment justified? And does she deserve it? Maybe NOT.

A girl child is a burden? Is she? Is she capable of nothing?
Image result for women empowerment handmade posters
The struggle of freedom in today's so called MODERN world.
‘The Girls’ have been successful in various fields & have proved their mettle. Mrs Indira Gandhi, the erudite former Prime Minister of India was the first women leader of India. Sunita Williams is an astronaut who has conferred various glories. Indira Nuri is the successful Indian and the CEO of Pepsico.
Image result for women empowerment posters
Equality before the laws but in reality? Surely not!
A women manages family & home, she’s a medley of Super powers. She never procrastinates any work. She doesn’t have a languid attitude towards life and believes in achieving every happiness of life not only for herself but for everyone around her. Women do not have an “I” obsessed attitude and that’s the reason they don’t edge the God out of their lifestyle. They believe in Love not loathness.
‘WOMEN’ now more seems to be a common word. The berserk attitude of men which they seem is smart, is actually destroying them. Women is a glory, she’s a melody for those who are keen to hear. India requires higher literacy, education & awareness to bring about a change in the mind set of people with superstitions & rocked brains.
“Give worth to worthy and ignorance to hurdles for success to flow into life”
-Mahatma Gandhi

Enjoy your high school with - High School Pedia :


Popular Posts

Anode Ray Experiment

→Anode ray experiment was conducted by E Goldstein. →These rays are also known as canal rays. →This experiment helped in the discovery of the proton. Apparatus Used A discharge tube  was taken in which there were 2 electrodes i.e. Anode(+ve) and the cathode (-ve). The tube was filled with an inert gas. A perforated or porous cathode was used. A layer of zinc sulphide was placed at the back of the cathode. There was a vacuum pump in the tube. High voltage (5000v-10000v) was allowed to flow through the system. It was observed that when the gas was at 1atm(atmospheric pressure ) no change was seen in the tube.  When the   pressure   was decreased inside the tube, a glow could be seen at the back side of the cathode.

Isotopes, Isobars and Isotones

Isotopes These are elements which have the same atomic number but different atomic mass . They have the same atomic number because the number of protons that are inside their nuclei remains the same. But, they have different atomic mass because the number of neutrons that are also inside their nuclei is different. As the number of protons inside nuclei remains same, therefore the overall charge of the elements also remains same as in isotopes: no of protons = no of electrons . Hence, as isotopes overall charge remains neutral, therefore their chemical properties will also remain identical.   Therefore, Isotopes are chemically same but physically different.

The Inverse & Reciprocal TRIGONOMETRIC Functions

So, this is my second post on trigonometry. In this post we're gonna cover the reciprocal and the inverse Trigonometric functions. If you haven't seen my first post you should definitely view it as it covers the basics of Trigonometry The Reciprocal Trigonometric Functions The reciprocal Trigonometric function of Sine is Cosecant, of Cosine is Secant & for Tangent it is Cotangent. Cosecant (Csc θ = 1/Sin θ) or (Hypotenuse/Opposite) Secant (Sec θ = 1/Cos θ) or (Hypotenuse/Adjacent) Cotangent (Cot θ = 1/Tan θ) or (Adjacent/Opposite) We can also represent Tan θ in another way. As Tan θ = opposite/adjacent  & Sin θ = opposite/hypotenuse  & Cos θ = adjacent/hypotenuse ∴ Tan θ = Sin θ/Cos θ (The hypotenuses cancel out) As Cot θ = 1/Tan θ  So, we can also represent Cot θ as Cos θ/Sin θ.

Rutherford Alpha Ray Scattering Experiment

Rutherford Alpha Ray Scattering Experiment Hey, Guys, most of you might have heard about the alpha ray scattering experiment and if you want to know in detail about Rutherford's model and the experiment he conducted, this is the right place for you... But first: Things You Must Know Some basic information that will help you understand rutherford experiment properly: Proton is a sub-atomic particle which is positively charged and has a mass of 1u. Alpha particles are helium atom with a charge of +2 as they have lost 2 electrons. Alpha particles have an atomic mass  of 4u. Gold is highly malleable and can be beaten into very thin sheets. Experiment Rutherford conducted his experiment in the following way: Rutherford took a very thin gold foil and bombarded it with high energy alpha particles. He placed a layer of zinc sulphide on the walls where the experiment was taking place because when alpha particles strike zinc sulphide layer, it results i

Cathode Ray Experiment

This experiment was conducted by J.J. Thomson (Sir Joseph John Thomson) in the year 1897. This experiment proved that atom is made up of fundamental particles which are much smaller than the smallest atom 'hydrogen' This experiment helped to discover electron. According to J.J. Thomson, the cathode rays consisted of very light, small and negatively charged particles. He named the particles "corpuscles" which were later known as electrons


UEFA CHAMPIONS LEAGUE Europe's biggest club soccer competition, The UEFA Champions League, takes place every year. The competition begins in September and ends in May. It is a classic tournament following a round-robin format after which the top teams qualify to the knockout stages. It includes 32 best clubs in different countries of Europe. Obviously teams from major countries like England, Spain, France, Germany and Italy qualify easily while teams from smaller countries like Ireland, Austria, Netherlands, Denmark have to go through a qualifying round. The teams who win the leagues in their countries qualify directly while in some countries even the second, third and fourth placed teams also qualify. Sometimes a team may qualify in the Champions League because they finished in the top-four. These clubs may or may not qualify through their leagues but their good performance may help them qualify. Even the champions of The UEFA Europa League, another prestigious league

Important Mathematical Constants!

Important Mathematical Constants Mathematical constants are those numbers that are special and interesting because they come up in the various fields of mathematics like geometry, calculus etc. These mathematical constants are usually named after the person who discovered it and they are represented by a symbol that is usually picked up from the Greek alphabet. Mathematical constants are by definition very important. In this article we will take a look at certain mathematical constants that are more commonplace than others. 1.       π (pi) or Archimedes constant (~3.14159):   π is defined as the ratio of the circumference of a circle to its diameter. This is probably the most popular mathematical constant. So π is the circumference of the circle whose diameter is 1 unit. You might have seen it popping up when calculating the area of a circle (πr 2 ) or the circumference of a circle (2πr). It has many uses throughout mathematics from calculating the area of certain shap